https://gos-ritual.ru город мертвых смоленское лютеранское кладбище.

Гидросфера

(по М.И. Львовичу)

Общепринятое и, как я полагаю, наиболее обоснованное определение понятия "гидросфера" - прерывистая водная оболочка Земли. По некоторым прежним представлениям, рамки гидросферы ограничивались Мировым океаном. Поскольку океан един, постольку гидросфера прежде не нуждалась в таком определении. Но воды рек и озер, так же как и подземные воды, являются составными частями гидросферы. А эти воды в отличие от океана дискретны. Отсюда и появляется необходимость определения гидросферы как прерывистой оболочки. Замечу, что противопоставление дискретности вод речной сети, озер и подземных вод континуальности океана не лишено условности, поскольку относится к стационарному состоянию гидросферы, чего в природе не существует. Гидросфера отличается высокой динамичностью, движущей силой которой служит круговорот воды. Этому грандиозному процессу на Земле посвящена отдельная глава. Поэтому следует в понятие о гидросфере ввести определение ее динамичности, подвижности.

Из сказанного следует, что понятие "гидросфера" равнозначно понятию о всех свободных водах Земли. Свободных в том смысле, что воды гидросферы не связаны химически и физически с минералами земной коры, т. е. могут двигаться под влиянием гравитационной силы, а также под влиянием тепла. В понятие "движение" входит и переход воды из одного агрегатного состояния в другое. Переход воды через парообразную фазу служит механизмом естественного опреснения воды.

Происхождение гидросферы связывается с дегазацией воды из мантии Земли, в которой содержится около 2*1025 г воды (Виноградов, 1963), или 20 млрд. км3.

Из приведенного определения гидросферы и ее краткой характеристики видно, что эта сфера Земли находится в тесной взаимосвязи с другими сферами - литосферой, атмосферой и биосферой. Связь гидросферы с земной корой происходит посредством подземных вод, а с мантией Земли - как с ее генетическим источником. Атмосферные воды (парообразная влага) связывают гидросферу с атмосферой. Гораздо сложнее взаимодействие гидросферы с биосферой. Общеизвестно, что большую часть живых организмов - растений и животных - составляет вода, но общая масса воды как часть органического мира незначительна относительно объема гидросферы, и не по этому признаку следует судить о биологической роли воды. В данном случае взаимосвязь гидросферы с биосферой гораздо сложнее, чем с литосферой и атмосферой. Важный фактор - участие воды в биологических процессах, начиная от возникновения жизни. Следует "исключить совершенно сухие участки из числа мест зарождения жизни и рассматривать жизнь как явление, присущее лишь гидросфере", и "жизнь в сущности есть производное воды", - писал Д. Бернал (1969, стр. 184). В своей теории происхождения жизни на Земле этот автор в значительной мере следует теории A. П. Опарина.

Другое значение воды - образование при ее участии в процессе фотосинтеза органического вещества - основы животного мира и почвообразования. При этом выделяется кислород, которым дышат люди и животные и который является основой для распространенных в природе и важных для обмена веществ окислительных процессов. Далее, вода с биосферой связана процессом транспирации, который мы относим к биологическому звену круговорота воды.

Переходя к количественной характеристике гидросферы, следует отметить, что представления по этому вопросу имеют свою историю, обзор которой довольно полно освещен в литературе, поэтому отсылаю читателя к основному из таких источников (Федосеев, 1967).

Об объеме гидросферы дают представление данные, помещенные в табл. 1.

Таблица 1. Гидросфера
Части гидросферы Объем воды тыс. км3 % от общего объема
Мировой океан 1 370 323 93,96
Подземные воды 60000 4,12
В том числе зоны активного водообмена 4 000 0,27
Ледники 24 000 1,65
Озера 280* 0,019
Почвенная влага 85** 0,006
Пары атмосферы 14 0,001
Речные воды 1,2 0,0001
Итого 1454193 100
* В том числе около 5 тыс. км3 воды в водохранилищах.
** В том числе около 2 тыс. км3 оросительных вод.

Весь объем гидросферы, по современным подсчетам, несколько превышает 1,4 млрд. км3. Точность современных представлений об объеме гидросферы колеблется в пределах около 50 млн. км3, что соответствует 3% объема гидросферы. Такая сравнительно высокая точность связана с наиболее надежным определением объема Мирового океана, составляющего почти 94% всего объема гидросферы. Действительно, за полувековой период, со времени появления эхолота, промеры морских глубин приобрели настолько массовый характер, что довольно точные вычисления объема даже наиболее отдаленных от суши частей океана не связаны с какими-либо затруднениями методологического характера. Теперь это уже в большей мере стало вопросом вычислительной техники. По последним данным, объем воды Мирового океана немного превосходит 1370 млн. км3 при его площади 361,3 млн. км3 и средней глубине 3790 м. Близкие к этой глубины были определены в последней четверти прошлого века. Так, Дж. Меррей уже в 1888 г. определил среднюю глубину океана лишь на 14 м больше современной, а наш соотечественник А. Тилло (1889), известный ученый, составивший первую карту падения рек Европейской России, в результате тщательных измерений оценил среднюю глубину океана в 3803 м. Объем воды океана, точно соответствующий установленному в настоящее время, почти 80 лет назад определил Карстен (Федосеев, 1967). Затем более полувека назад такие же данные получил Э. Коссина (Kossinna, 1921). Как показали недавние определения (Степанов, 1961), в которых уже были использованы массовые измерения глубин эхолотом, данные Э. Коссина были подтверждены почти без изменений. Но параллельно с этими данными в литературе неоднократно появлялись устаревшие. Например, в известной книге А. В. Огиевского (1951) объем воды океана оценен в 1 304 млн. км3, в работах Р. Нейса (1964, 1968) - в 1 320 млн. км3, а в книге Р. Фюрона (1966) - даже в 1 200 млн. км3, т. е. на 170 млн. км3, или на 12%, меньше действительного. Подобные расхождения носят, конечно, случайный характер, и они не меняют тех представлений об объеме воды океана, которые сложились в течение истекших десятилетий.

Сказанное о надежности данных об объеме воды океана в какой-то мере относится и к определению массы ледников, представление о которой значительно улучшилось в последние годы. Еще сравнительно недавно на основании всей имеющейся информации масса ледников оценивалась рядом авторов, например, Р. Нейсом (Nace, 1964), в том числе и мною (Львович, 1964), в 29-30 млн. км3. Однако в результате большого количества промеров мощности полярных ледниковых щитов геофизическими методами было установлено, что прежние представления об их массе были преувеличены в основном из-за недостаточно полных представлений о рельефе подледной поверхности Земли. Под ледниковым щитом Антарктиды оказалось значительно больше возвышенностей и гор, чем представлялось прежде. Вместе с тем в результате исследований по программе последнего Геофизического года улучшились представления и о мощности горных ледников. Известные расчеты показали, что масса полярных и горных ледников составляет 2 398*1022 г (Shumskiy и др., 1964; Шумский, Кренке, 1965), или с округлением 24 млн. км3. Этот объем льда занимает площадь в 16,2 млн. км2. Следовательно, средняя мощность покровных ледников равна около 1500 м. На долю всех остальных льдов, по данным этих же авторов, приходится около 250 тыс. км3, в том числе примерно 200 тыс. км3 грунтового льда (преимущественно зоны многолетней мерзлоты). Около 35 тыс. км3 морского льда и айсбергов входят в объем воды океана, а 1,6 тыс. км3 атмосферного льда - в объем паров атмосферы.

Наглядное представление об огромной массе ледников дают следующие цифры. Если бы весь лед растаял, то уровень океана повысился бы на 64 м, а его площадь возросла бы на 1,5 млн. км2, а площадь суши соответственно уменьшилась бы на 1%.

Объем озерной воды, казалось бы, вычислить не сложно: большие озера - каждое в отдельности, малые - приближенно, общим числом. Тем не менее современные представления об объеме воды озер нельзя считать вполне надежными. Отчасти это связано с отсутствием систематизированных данных о глубинах и площади больших озер, трудно также учесть объем воды в малых озерах (хотя последние составляют небольшую часть общего объема, поэтому неточности в их определении несущественно повлияют на выводы). Кроме того, объем озер, особенно бессточных, - это существенно изменяющаяся величина. Например, площадь оз. Эйр в Австралии в многоводные периоды достигает нескольких тысяч квадратных километров, а в сухое время оно превращается в небольшой солончак; весьма изменчив объем оз. Чад; площадь Каспийского моря в последние десятилетия уменьшилась больше чем на 50 тыс. км2, а его объем - приблизительно на 800 км3. Но неточности связаны также и с недостаточно полным статистическим учетом озер.

Последние данные Р. Нейса (Nace, 1964), определившего объем пресных озер в 125 тыс. км3 и соленых - в 105 тыс. км3, вероятно, несколько преуменьшены. Следует, по-видимому, принять объем в 275 тыс. км3, в том числе около 150 тыс. км3 воды приходится на проточные пресные озера и 125 тыс. км3 - на соленые. Кроме того, необходимо учесть и объем искусственных озер - водохранилищ. В качестве исходной величины для определения их объема приняты данные по водохранилищам мира емкостью более 100 млн. м3, она составила 4100 км3 (Авакян, Овчинникова, 1971). Если учесть неполноту данных, неизбежную при использовании литературных источников, а также объем малых водохранилищ, то не будет, вероятно, существенной ошибки, если принять объем всех водохранилищ в 5 тыс. км3.

В связи с увеличением озерной части гидросферы интересно определить, за счет каких других ее частей осуществляется этот процесс. Современный объем гидросферы стационарен, устойчив, если не считать поступления в гидросферу в среднем до 1 км3 воды в год за счет дегазации мантии Земли - процесса исключительно важного для происхождения гидросферы в геологическом аспекте времени. Однако этот объем не имеет практического значения для тех периодов, которые нас интересуют в связи с процессом круговорота и использованием вод в сравнительно недалеком прошлом и через десятилетия в будущем. Таким образом, изменение объема одной ее части не может произойти без влияния на объем других.

Водохранилища наполняются водой речного стока, который не достигает океана. Отсюда следует, что рост объема озерной части гидросферы происходит за счет океана, теряющего соответствующий объем. Поэтому 5 тыс. км3 воды, собранной в водохранилищах, решают важные водохозяйственные задачи человечества, но не влияют сколько-нибудь заметно на океаническую часть гидросферы.

Что касается объема воды в руслах рек, то точно его определить невозможно. Это вода в реках Земли протяжением в миллионы километров с размерами русел от нескольких метров до многих десятков километров. В результате приближенных расчетов, которые были произведены на основании общей протяженности речной сети, а также ширины и глубины рек, разделенных на три группы, я определил в 1940 г. общий объем воды в речных руслах в 1200 км3 (Львович, 1945). Относительно малые размеры "стационарного" запаса воды в реках удивили меня и многих других гидрологов. До этой прикидки представлялось, что воды в реках гораздо больше - до сотен тысяч кубических километров. Это явилось своего рода открытием в гидрологии, особенно интересным и важным при сопоставлении с речным стоком, в 30-40 раз большим единовременного запаса воды в руслах рек. Объем русловых вод в 1200 км3 впоследствии был принят Р. Нейсом (Nace, 1968). Правда, Г. П. Калинин (1968) считает возможным и объем русловых вод в 2 тыс. км3. Но примерные прикидки убеждают меня, что прежде принятая мною величина вряд ли заметно преуменьшена, хотя я не отрицаю возможности ее уточнения. Существенное значение имеет порядок величины, установленный в общем правильно.

Почвенная влага отличается от грунтовых и подземных вод более тесной зависимостью от условий погоды. Во влажные сезоны влаги в почве содержится много, в сухие сезоны она быстро расходуется на испарение. Кроме того, распределение и режим почвенной влаги связаны с биологическими процессами более тесно, чем грунтовые и подземные воды. Одна из характерных особенностей состава почвы - содержание в ней органических веществ, которые сильно влияют на водные свойства почвенного покрова. Вода входит в состав почвы и наряду с содержанием гумуса является одним из элементов, характеризующих ее плодородие. Поэтому биологическая продуктивность территории в значительной степени зависит от содержания влаги в почве. Избыток почвенной влаги приводит к заболачиванию почвы, в результате чего культурные растения и леса находятся в угнетенном состоянии.

Приближенный объем почвенной влаги прежде я оценивал в 65 тыс. км3, потом на основании содержания влаги в почве в различных зонах - в 75 тыс. км3 (Львович, 1964). Для этой цели была использована ограниченная информация, оправданная задачей прикидочной оценки. Впоследствии результаты этих расчетов уточнялись в результате изучения водного баланса суши, и в 1970 г. я ее оценивал в 82 тыс. км3 (Львович, 1970), а в 1971 г., обобщая новые результаты исследований материков земного шара, пришел к выводу, что она близка к 85 тыс. км3 (Lvovitch, 1971). Важно, что и этот элемент гидросферы впервые получил в общем правильную оценку, изменявшуюся в процессе усовершенствования расчетов в пределах от 65 до 83 тыс. км3, не считая увеличения почвенной влаги за счет орошения. Можно полагать, что для существенных дальнейших уточнений осталось теперь меньше возможностей, хотя не следует забывать, что оценка запасов почвенной влаги, полученная воднобалансовым методом, зависит от атмосферных осадков, количество которых в последнее время подвергается уточнениям, связанным с разнообразием конструкции осадкомеров в разных странах и поправками на потерю из них воды на смачивание сосудов, испарение и выдувание, особенно снеговых осадков. При расчетах запасов почвенной влаги учитывалось, что обмен этой части гидросферы продолжается один год. Это допущение вполне оправданно, поскольку почвенная влага находится в непосредственном обмене с атмосферой и легко подвержена испарению, чему способствует и ее расходование на транспирацию. Что касается расходования части почвенной влаги на питание подземных вод, то оно составляет около 14% ее запасов и, как мы увидим, хорошо увязывается с другими элементами водного баланса.

При равномерном распределении почвенной влаги на площади суши слой ее равен около 570 мм. Эта величина реальна, если учесть, что в природе она колеблется в весьма больших пределах - от нескольких миллиметров в почве пустынь до нескольких метров в болотах. Здесь речь идет о естественных запасах почвенной влаги. Но на орошение, которое следует рассматривать как умножение ресурсов почвенной влаги, в настоящее время расходуется около 2 тыс. км3 главным образом речных и отчасти подземных вод. Таким образом, общий объем почвенной влаги, включая воду, расходуемую на орошение, составляет 85 тыс. км3. Но, может быть, увеличение объема почвенной влаги в результате орошения происходит за счет какой-либо другой части гидросферы? Это могло произойти только в том случае, если для орошения брались бы стационарные запасы подземных вод, не возобновляемые в процессе круговорота. Такие подземные воды используются на орошение в некоторых районах, но объем их изъятий для этой цели невелик.

В орошаемом земледелии расходуются главным образом подземные воды, активно участвующие в круговороте воды и возобновляемые в его процессе. Например, в Индии, как это автор наблюдал во время его поездок по этой стране, орошение подземными водами производится преимущественно в тех случаях, когда они питаются не только за счет фильтрации осадков, но также и оросительной воды. В таких случаях использование подземных вод, требующее их откачки, позволяет избежать заболачивания орошаемых полей. Для борьбы с этим неблагоприятным явлением потребовался бы искусственный дренаж с густой сетью осушительных канав. Но вместо него вполне обоснованно практикуется откачка грунтовых вод с использованием их для орошения. В целом за счет подземных вод, возобновляемых в процессе круговорота, расходуется на орошение около 10-15%, а 85-90% оросительных вод черпается из рек, озер и водохранилищ.

Из всего сказанного следует вывод о том, что рост ресурсов почвенной влаги происходит главным образом за счет интенсификации процесса водообмена.

Наиболее сложно определить объем подземных вод. Информация о геологическом строении земной коры до глубины 2-4 тыс. м, а в некоторых случаях и глубже в настоящее время имеется для значительных частей суши, и она, вероятно, могла бы послужить основой для более достоверных расчетов, чем те, которые сейчас произведены. Однако опубликованные геологические карты далеко не всегда содержат необходимые для этой цели сведения, а специальные гидрогеологические карты составлены лишь для сравнительно небольшой части суши и очень часто не содержат данных для интересующих нас расчетов.

По А. П. Виноградову (1959), во всей мантии Земли содержится 0,5% воды, или 13-15 млрд. км3, т. е. приблизительно в 10-12 раз больше, чем в Мировом океане. Эти воды, химически и физически связанные с минералами и горными породами, служат источником питания вод земной коры и поверхностных вод. По расчетам Ф. А. Макаренко (1948, 1966), возможный приток глубинных вод в земную кору и на поверхность за счет мантии Земли достигает в среднем 1 км3 в год. Так как абсолютный возраст земной коры равен примерно 3,5 млрд. лет, весь объем поверхностных вод и вод, содержащихся в земной коре, должен составить около 3,5 млрд. км3.

В. И. Вернадский оценивал все воды земной коры в 1,3 млрд. км3, что примерно соответствует объему воды в океане. Но значительная масса этой воды находится в состоянии, химически связанном с минералами, т. е. входит в состав минералов. Объем химически несвязанных вод верхней части земной коры он оценивал приблизительно в 60 млн. км3.

Современные расчеты Ф. А. Макаренко показывают, что в пятикилометровой толще земной коры в пределах суши объем воды составляет 12% объема этой толщи, или 84,4 млн. км3. Исключая химически связанную воду, общий объем гравитационных вод в этой же толще земной коры в пределах суши, по А. Ф. Макаренко, составляет 60 млн. км3, что соответствует объему, ранее полученному В. И. Вернадским.

Гидролог Р. Нейс (Nace, 1964, 1968) определил запасы подземных вод в 2 млн. миль3 (8100 тыс. км3), что в 7-8 раз меньше, чем дали расчеты упомянутых авторов. Половину этого объема Р. Нейс относит к глубине до 0,5 мили (800 м) и половину - к более глубоким частям земной коры. Общее количество подземных вод, по этим расчетам, несомненно, преуменьшено, но оценка подземных вод до глубины 800 м, по-видимому, близка к действительности. Я ее принимаю, округляя в пределах точности расчета до 4 млн. км3, и отношу к зоне активного водообмена.

Из сказанного видно, что представления о количестве подземных вод носят пока еще весьма приближенный характер.

Химический состав подземных вод весьма разнообразен: от чистейших пресных вод до глубинных крепких рассолов, содержащих более 250 г солей в 1 л воды. Преобладают хлоридно-натриевые воды, реже натриево-кальциевые и натриево-магниевые. Пресные подземные воды распространяются на большие глубины в редких случаях. Как правило, на глубинах более 1,5-2 км встречаются соленые воды. В полупустынных и пустынных районах соленые подземные воды распространены и на небольших глубинах, а на их поверхности часто как бы плавают линзы пресных подземных вод дождевого и снегового происхождения. Эти воды просачиваются с поверхности и благодаря меньшей плотности не смешиваются с солеными водами. В. Н. Кунин (1959), много лет посвятивший изучению линз пресных подземных вод в Каракумах, разработал научные основы их использования. В пределах распространения вечной мерзлоты, или, как теперь ее предпочитают называть, многолетней мерзлоты, до глубины 500 м, а иногда и глубже подземные воды находятся в твердом состоянии в виде льда. Это явление распространено на севере и северо-востоке Азиатской части СССР и в приполярной части Северной Америки.

По степени участия в круговороте воды подземные воды делятся на несколько групп: от застойных вод, возраст которых соразмерен с возрастом вмещающих их горных пород, до так называемой верховодки - сезонных грунтовых вод, образующихся во влажные периоды и исчезающих в сухие.

Остается неоцененной еще одна часть гидросферы - пары атмосферы. Ее объем был вычислен мною на основании данных о влажности воздуха в пределах тропосферы, выше которой влага практически отсутствует. В экваториальной зоне тропосфера достигает высоты 16-18 км, в умеренных широтах - 10-12 км и в полярных - 7-10 км. Объем пара в пересчете на воду составил 14 тыс. км3. Объем этой части гидросферы мал, но ее значение чрезвычайно велико, так как она дает начало всем пресным водам на Земле. Из небольшого стационарного объема паров атмосферы в результате многократного повторения Цикла влагооборота ежегодно конденсируется почти в 40 раз больший объем атмосферных осадков, выпадающих на поверхность океана и суши.

Подводя итог тому, что сейчас известно об объеме гидросферы и ее отдельных частей, следует подчеркнуть, что остается немало вопросов, еще недостаточно точно решенных. Но это в основном относится к тем ее частям, изменения объема которых не могут существенно повлиять на общий объем гидросферы. Теперь необходимо рассмотреть запасы пресной воды, представляющей собой особый интерес как воды, наиболее доступной для удовлетворения нужд человечества. Приблизительное представление о пресноводной части гидросферы дают данные табл. 2.

Таблица 2. Пресные воды гидросферы
Части гидросферы Объем пресной воды, км3 % от данной части гидросферы % от общего объема пресной воды
Ледники 24 000 000 100 85
Подземные воды 4 000 000 6,7 14
Озера и водохранилища 155 000 55 0,6
Почвенная влага 83 000 98 0,3
Пары атмосферы 14 000 100 0,05
Речные воды 1 200 100 0,004

Лед, из которого состоят ледники, в силу свойств твердой фазы воды является пресным. Но и по сути своего происхождения ледники пресноводны, так как созданы в результате аккумуляции и трансформирования снега. Однако использование ледников как источника водных ресурсов остается пока проблематичным, по крайней мере в течение ближайших десятилетий, хотя не исключено в более отдаленной перспективе. Объем пресных озер и водохранилищ приближенно оценен на основании сказанного выше. Почвенная влага, как правило, пресна, исключая влагу солонцов и солончаков, которую можно приближенно оценить не более чем в 2-3%, т. е. величиной в 2 тыс. км3.

Пресноводный характер паров атмосферы не требует пояснений.

Что касается речных вод, то они хотя в какой-то мере и минерализованы, но, как правило, относятся к пресным. Минерализация речной воды более 1 г/л, что служит пределом для питьевой воды, например, по нормам, принятым в Советском Союзе, встречается довольно редко и в основном относится к засушливым районам, где реки, как правило, невелики и маловодны. Кроме того, сравнительно высокая минерализация характерна лишь для межени, когда в реках таких районов остается совсем мало воды, и очень часто она сохраняется только в плесах, разобщенных между собой в связи с прекращением стока. Такие плесы по существу представляют собой небольшие озера, в которых минерализация увеличивается по мере их усыхания. Но во время паводков и половодья минерализация воды в таких реках резко уменьшается. В отдельных случаях сравнительно высокая минерализация воды в межень связана с питанием рек источниками грунтовых вод, образующихся в соленосных глинах. Такое явление автор наблюдал в Западном Казахстане. Но влияние соленых источников в связи с их малым дебитом сказывается на степени минерализации речной воды в пределах небольших участков и прекращается во время паводков. Бывают и другие случаи, например питание рек минеральными источниками. Это явление я наблюдал на северном склоне Кавказа, где обильные нарзанные источники при общей минерализации их воды в 2 г/л питают небольшую горную реку Хасаут. Все подобные случаи возможны и в других местах, но в целом они могут служить больше для иллюстрации сравнительно редких исключений, чем характеризовать правило. В целом сама природа речных вод, их возникновение сразу же вслед за процессом конденсации и выпадения осадкой, дающим начало пресным водам или образующимся в результате питания активными подземными водами, циркулирующими в хорошо промытых пластах горных пород, говорит о пресноводном их характере. Это обстоятельство послужило основанием для того, чтобы отнести все русловые речные воды к пресным.

Вместе с тем не лишено условности отсутствие в табл. 2 морской воды, какая-то доля объема которой, бесспорно, может быть отнесена к пресной. Это относится к приустьевым участкам больших рек, особенно если они впадают в неширокие заливы. Так, пресная вода характерна для восточной части Финского залива - "Маркизовой лужи", питаемой идеальными по качеству, очень слабо минерализованными водами реки Невы. Пресная вода распространяется на незначительных частях акватории Атлантического океана, прилегающих к устьям величайших рек мира - Амазонке, Ла-Плате, Конго. На огромных площадях приустьевых частей этих рек пресная речная вода отличается значительной мутностью и своим цветом от океанических вод. В Тихом океане подобное явление, но, вероятно, еще ярче выраженное, наблюдается при выходе Амура не в открытое море, а в Татарский пролив. Мощные сибирские реки опресняют воду на больших площадях Ледовитого океана. Вероятно, не будет преувеличением считать, что миллионы квадратных километров акватории морей и океанов находятся во "власти" речных вод. Но эта "власть" весьма эфемерна, так как на больших пространствах она неустойчива и непостоянна во времени. Мощные морские течения быстро рассеивают речные воды, вторгшиеся в океан. А при мощных циклонах это явление усиливается ветром. По этой причине пока еще нет достаточных оснований учитывать пресную речную воду в пределах океана. Но вместе с тем вполне очевидна необходимость изучения распространения и режима пресных вод в океане.

Итак, общий объем пресных вод на Земле достигает приблизительно 28,25 млн. км3, что составляет около 2% общего объема гидросферы. Но если учесть, что основная часть пресных вод, законсервированных в полярных ледниках в виде льда, недоступна для использования, то объем остальной части пресных вод составляет всего лишь немногим более 4,2 млн. км3, или 0,3% объема гидросферы. Цифра весьма впечатляющая и говорит как будто бы о бедности Земли ресурсами воды, в которых наиболее заинтересовано человечество. Однако статический подход не может дать правильного представления о действительных ресурсах пресных вод. Необходимо принять во внимание динамические процессы, происходящие в гидросфере, и непрерывно возобновляющиеся стационарные запасы пресных вод. Именно поэтому круговорот воды представляет собой движущую силу возобновления ресурсов пресных вод и является основным предметом изучения гидрологической науки.